Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An experimental test of fitness variation across a hydrologic gradient predicts willow and poplar species distributions.

Identifieur interne : 001527 ( Main/Exploration ); précédent : 001526; suivant : 001528

An experimental test of fitness variation across a hydrologic gradient predicts willow and poplar species distributions.

Auteurs : Xiaojing Wei [États-Unis] ; Jessica A. Savage [États-Unis] ; Charlotte E. Riggs [États-Unis] ; Jeannine Cavender-Bares [États-Unis]

Source :

RBID : pubmed:28241378

Descripteurs français

English descriptors

Abstract

Environmental filtering is an important community assembly process influencing species distributions. Contrasting species abundance patterns along environmental gradients are commonly used to provide evidence for environmental filtering. However, the same abundance patterns may result from alternative or concurrent assembly processes. Experimental tests are an important means to decipher whether species fitness varies with environment, in the absence of dispersal constraints and biotic interactions, and to draw conclusions about the importance of environmental filtering in community assembly. We performed an experimental test of environmental filtering in 14 closely related willow and poplar species (family Salicaceae) by transplanting cuttings of each species into 40 common gardens established along a natural hydrologic gradient in the field, where competition was minimized and herbivory was controlled. We analyzed species fitness responses to the hydrologic environment based on cumulative growth and survival over two years using aster fitness models. We also examined variation in nine drought and flooding tolerance traits expected to contribute to performance based on a priori understanding of plant function in relation to water availability and stress. We found substantial evidence that environmental filtering along the hydrologic gradient played a critical role in determining species distributions. Fitness variation of each species in the field experiment was used to model their water table depth optima. These optima predicted 68% of the variation in species realized hydrologic niches based on peak abundance in naturally assembled communities in the surrounding region. Multiple traits associated with water transport efficiency and water stress tolerance were correlated with species hydrologic niches, but they did not necessarily covary with each other. As a consequence, species occupying similar hydrologic niches had different combinations of trait values. Moreover, individual traits were less phylogenetically conserved than species hydrologic niches and integrated water stress tolerance as determined by multiple traits. We conclude that differential fitness among species along the hydrologic gradient was the consequence of multiple traits associated with water transport and water stress tolerance, expressed in different combinations by different species. Varying environmental tolerance, in turn, played a critical role in driving niche segregation among close relatives along the hydrologic gradient.

DOI: 10.1002/ecy.1784
PubMed: 28241378


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">An experimental test of fitness variation across a hydrologic gradient predicts willow and poplar species distributions.</title>
<author>
<name sortKey="Wei, Xiaojing" sort="Wei, Xiaojing" uniqKey="Wei X" first="Xiaojing" last="Wei">Xiaojing Wei</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, Minnesota, 55108, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, Minnesota, 55108</wicri:regionArea>
<wicri:noRegion>55108</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Savage, Jessica A" sort="Savage, Jessica A" uniqKey="Savage J" first="Jessica A" last="Savage">Jessica A. Savage</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, University of Minnesota, 1035 Kirby Drive, Duluth, Minnesota, 55812, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of Minnesota, 1035 Kirby Drive, Duluth, Minnesota, 55812</wicri:regionArea>
<wicri:noRegion>55812</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Riggs, Charlotte E" sort="Riggs, Charlotte E" uniqKey="Riggs C" first="Charlotte E" last="Riggs">Charlotte E. Riggs</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, Minnesota, 55108, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, Minnesota, 55108</wicri:regionArea>
<wicri:noRegion>55108</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cavender Bares, Jeannine" sort="Cavender Bares, Jeannine" uniqKey="Cavender Bares J" first="Jeannine" last="Cavender-Bares">Jeannine Cavender-Bares</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, Minnesota, 55108, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, Minnesota, 55108</wicri:regionArea>
<wicri:noRegion>55108</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28241378</idno>
<idno type="pmid">28241378</idno>
<idno type="doi">10.1002/ecy.1784</idno>
<idno type="wicri:Area/Main/Corpus">001430</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001430</idno>
<idno type="wicri:Area/Main/Curation">001430</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001430</idno>
<idno type="wicri:Area/Main/Exploration">001430</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">An experimental test of fitness variation across a hydrologic gradient predicts willow and poplar species distributions.</title>
<author>
<name sortKey="Wei, Xiaojing" sort="Wei, Xiaojing" uniqKey="Wei X" first="Xiaojing" last="Wei">Xiaojing Wei</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, Minnesota, 55108, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, Minnesota, 55108</wicri:regionArea>
<wicri:noRegion>55108</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Savage, Jessica A" sort="Savage, Jessica A" uniqKey="Savage J" first="Jessica A" last="Savage">Jessica A. Savage</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, University of Minnesota, 1035 Kirby Drive, Duluth, Minnesota, 55812, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of Minnesota, 1035 Kirby Drive, Duluth, Minnesota, 55812</wicri:regionArea>
<wicri:noRegion>55812</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Riggs, Charlotte E" sort="Riggs, Charlotte E" uniqKey="Riggs C" first="Charlotte E" last="Riggs">Charlotte E. Riggs</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, Minnesota, 55108, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, Minnesota, 55108</wicri:regionArea>
<wicri:noRegion>55108</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cavender Bares, Jeannine" sort="Cavender Bares, Jeannine" uniqKey="Cavender Bares J" first="Jeannine" last="Cavender-Bares">Jeannine Cavender-Bares</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, Minnesota, 55108, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, Minnesota, 55108</wicri:regionArea>
<wicri:noRegion>55108</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Ecology</title>
<idno type="ISSN">0012-9658</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Droughts (MeSH)</term>
<term>Ecosystem (MeSH)</term>
<term>Plant Physiological Phenomena (MeSH)</term>
<term>Populus (physiology)</term>
<term>Salix (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Phénomènes physiologiques des plantes (MeSH)</term>
<term>Populus (physiologie)</term>
<term>Salix (physiologie)</term>
<term>Sécheresses (MeSH)</term>
<term>Écosystème (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Populus</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Droughts</term>
<term>Ecosystem</term>
<term>Plant Physiological Phenomena</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Phénomènes physiologiques des plantes</term>
<term>Sécheresses</term>
<term>Écosystème</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Environmental filtering is an important community assembly process influencing species distributions. Contrasting species abundance patterns along environmental gradients are commonly used to provide evidence for environmental filtering. However, the same abundance patterns may result from alternative or concurrent assembly processes. Experimental tests are an important means to decipher whether species fitness varies with environment, in the absence of dispersal constraints and biotic interactions, and to draw conclusions about the importance of environmental filtering in community assembly. We performed an experimental test of environmental filtering in 14 closely related willow and poplar species (family Salicaceae) by transplanting cuttings of each species into 40 common gardens established along a natural hydrologic gradient in the field, where competition was minimized and herbivory was controlled. We analyzed species fitness responses to the hydrologic environment based on cumulative growth and survival over two years using aster fitness models. We also examined variation in nine drought and flooding tolerance traits expected to contribute to performance based on a priori understanding of plant function in relation to water availability and stress. We found substantial evidence that environmental filtering along the hydrologic gradient played a critical role in determining species distributions. Fitness variation of each species in the field experiment was used to model their water table depth optima. These optima predicted 68% of the variation in species realized hydrologic niches based on peak abundance in naturally assembled communities in the surrounding region. Multiple traits associated with water transport efficiency and water stress tolerance were correlated with species hydrologic niches, but they did not necessarily covary with each other. As a consequence, species occupying similar hydrologic niches had different combinations of trait values. Moreover, individual traits were less phylogenetically conserved than species hydrologic niches and integrated water stress tolerance as determined by multiple traits. We conclude that differential fitness among species along the hydrologic gradient was the consequence of multiple traits associated with water transport and water stress tolerance, expressed in different combinations by different species. Varying environmental tolerance, in turn, played a critical role in driving niche segregation among close relatives along the hydrologic gradient.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">28241378</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>10</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>10</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0012-9658</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>98</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2017</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Ecology</Title>
<ISOAbbreviation>Ecology</ISOAbbreviation>
</Journal>
<ArticleTitle>An experimental test of fitness variation across a hydrologic gradient predicts willow and poplar species distributions.</ArticleTitle>
<Pagination>
<MedlinePgn>1311-1323</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/ecy.1784</ELocationID>
<Abstract>
<AbstractText>Environmental filtering is an important community assembly process influencing species distributions. Contrasting species abundance patterns along environmental gradients are commonly used to provide evidence for environmental filtering. However, the same abundance patterns may result from alternative or concurrent assembly processes. Experimental tests are an important means to decipher whether species fitness varies with environment, in the absence of dispersal constraints and biotic interactions, and to draw conclusions about the importance of environmental filtering in community assembly. We performed an experimental test of environmental filtering in 14 closely related willow and poplar species (family Salicaceae) by transplanting cuttings of each species into 40 common gardens established along a natural hydrologic gradient in the field, where competition was minimized and herbivory was controlled. We analyzed species fitness responses to the hydrologic environment based on cumulative growth and survival over two years using aster fitness models. We also examined variation in nine drought and flooding tolerance traits expected to contribute to performance based on a priori understanding of plant function in relation to water availability and stress. We found substantial evidence that environmental filtering along the hydrologic gradient played a critical role in determining species distributions. Fitness variation of each species in the field experiment was used to model their water table depth optima. These optima predicted 68% of the variation in species realized hydrologic niches based on peak abundance in naturally assembled communities in the surrounding region. Multiple traits associated with water transport efficiency and water stress tolerance were correlated with species hydrologic niches, but they did not necessarily covary with each other. As a consequence, species occupying similar hydrologic niches had different combinations of trait values. Moreover, individual traits were less phylogenetically conserved than species hydrologic niches and integrated water stress tolerance as determined by multiple traits. We conclude that differential fitness among species along the hydrologic gradient was the consequence of multiple traits associated with water transport and water stress tolerance, expressed in different combinations by different species. Varying environmental tolerance, in turn, played a critical role in driving niche segregation among close relatives along the hydrologic gradient.</AbstractText>
<CopyrightInformation>© 2017 by the Ecological Society of America.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wei</LastName>
<ForeName>Xiaojing</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, Minnesota, 55108, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Savage</LastName>
<ForeName>Jessica A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Minnesota, 1035 Kirby Drive, Duluth, Minnesota, 55812, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Riggs</LastName>
<ForeName>Charlotte E</ForeName>
<Initials>CE</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, Minnesota, 55108, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cavender-Bares</LastName>
<ForeName>Jeannine</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, Minnesota, 55108, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>04</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Ecology</MedlineTA>
<NlmUniqueID>0043541</NlmUniqueID>
<ISSNLinking>0012-9658</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="Y">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018521" MajorTopicYN="N">Plant Physiological Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032108" MajorTopicYN="N">Salix</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Salicaceae</Keyword>
<Keyword MajorTopicYN="N">aster fitness models</Keyword>
<Keyword MajorTopicYN="N">environmental filtering</Keyword>
<Keyword MajorTopicYN="N">field experiment</Keyword>
<Keyword MajorTopicYN="N">functional traits</Keyword>
<Keyword MajorTopicYN="N">hydrologic niche segregation</Keyword>
<Keyword MajorTopicYN="N">phylogenetic signal</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>05</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>01</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>02</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>2</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>10</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>2</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28241378</ArticleId>
<ArticleId IdType="doi">10.1002/ecy.1784</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Wei, Xiaojing" sort="Wei, Xiaojing" uniqKey="Wei X" first="Xiaojing" last="Wei">Xiaojing Wei</name>
</noRegion>
<name sortKey="Cavender Bares, Jeannine" sort="Cavender Bares, Jeannine" uniqKey="Cavender Bares J" first="Jeannine" last="Cavender-Bares">Jeannine Cavender-Bares</name>
<name sortKey="Riggs, Charlotte E" sort="Riggs, Charlotte E" uniqKey="Riggs C" first="Charlotte E" last="Riggs">Charlotte E. Riggs</name>
<name sortKey="Savage, Jessica A" sort="Savage, Jessica A" uniqKey="Savage J" first="Jessica A" last="Savage">Jessica A. Savage</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001527 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001527 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28241378
   |texte=   An experimental test of fitness variation across a hydrologic gradient predicts willow and poplar species distributions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28241378" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020